NumPy ek mahatvapurna scientific computing library hai jo Python mein upyog hoti hai. Isse hum numerical calculations kar sakte hain aur data analysis mein bhi madad milti hai. Yadi aap Jupyter Notebook me NumPy install kaise kare sikhana chahte hain, toh yeh step-by-step guide aapke liye hai:
(toc)
Jupyter notebook me NumPy kaise install kare :
Step 1: Anaconda Install Karein (Agar nahi hai)
Sabse pehle, agar aapke paas Anaconda nahi hai, toh aapko use install karna hoga. Anaconda, Python ke liye ek shaktishali distribution hai jo NumPy ke sath aata hai. Aap ise [Anaconda's official website](https://www.anaconda.com/products/distribution) se download kar sakte hain.
Step 2: Anaconda Navigator Kholein
Anaconda Navigator ko kholein. Yeh aapke system ke applications mein hoga. Navigator ko kholein aur Jupyter Notebook launch karein.
Step 3: Naya Notebook Banaein
Jupyter Notebook khul gayi hai, ab aapko ek naya notebook create karna hoga. Iske liye, right side mein "New" par click karein, fir "Python 3" select karein.
Step 4: NumPy Install Karein
Ab aapko Jupyter Notebook me NumPy install karna hai. Niche diye gaye code ko ek cell mein likhein aur us cell ko run karein:
!conda install numpy
Yeh command aapke system mein NumPy install karegi. Agar koi prompt aata hai toh 'y' press karein.
Step 5: NumPy Ko Import Karein
Ab aap NumPy library ko apne notebook mein import kar sakte hain. Ek cell mein niche diye gaye code ko likhein aur usse run karein:
import numpy as np(code-box)
Yadi koi error nahi aata hai, toh NumPy ab aapke notebook mein safaltapoorvak import ho chuki hai.
Isse Bhi Padhe: Jupyter Notebook me secrets ko store kaise karein.
Step 6: NumPy Ka Istemal Karein
Ab aap NumPy ka upyog apne projects mein kar sakte hain. NumPy aapko arrays, matrices, ganitik functions, aadi provide karta hai jo aapke numerical calculations mein madad karte hain.
Is tarah se aapne sikha Jupyter Notebook me NumPy install kaise kare aur uska istemal kaise kare. NumPy ke functions aur capabilities ke baare mein adhik jaankari ke liye, aap NumPy's official documentation refer kar sakte hain.
Yadi aapko koi aur madad chahiye, toh niche comment kare. Happy coding!